- Hem
- Böcker
- Kurslitteratur
- Matematik & Naturvetenskap
- Patterns, Predictions, and Actions (inbunden, eng)

Patterns, Predictions, and Actions (inbunden, eng)
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impactsPatterns, Pred...
669 kr
Bara 2 kvar
Skickas inom 4 - 5 vardagar
- Fri frakt
Just nu: Fri frakt på alla köp
Snabb leverans
Alltid låga priser
Produktbeskrivning
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impactsPatterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications.
Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions.
Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actionsPays special attention to societal impacts and fairness in decision makingTraces the development of machine learning from its origins to todayFeatures a novel chapter on machine learning benchmarks and datasetsInvites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebraAn essential textbook for students and a guide for researchers
Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions.
Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actionsPays special attention to societal impacts and fairness in decision makingTraces the development of machine learning from its origins to todayFeatures a novel chapter on machine learning benchmarks and datasetsInvites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebraAn essential textbook for students and a guide for researchers
Format | Inbunden |
Omfång | 320 sidor |
Språk | Engelska |
Förlag | Princeton University Press |
Utgivningsdatum | 2022-10-18 |
ISBN | 9780691233734 |
Specifikation
Böcker
- Format Inbunden
- Antal sidor 320
- Språk Engelska
- Utgivningsdatum 2022-10-18
- ISBN 9780691233734
- Förlag Princeton University Press
Leverans
Vi erbjuder flera smidiga leveransalternativ beroende på ditt postnummer, såsom Budbee Box, Early Bird, Instabox och DB Schenker. Vid köp över 399 kr är leveransen kostnadsfri, annars tillkommer en fraktavgift från 39 kr. Välj det alternativ som passar dig bäst för en bekväm leverans.
Betalning
Du kan betala tryggt och enkelt via Avarda med flera alternativ: Swish för snabb betalning, kortbetalning med VISA eller MasterCard, faktura med 30 dagars betalningstid, eller konto för flexibel delbetalning.
Specifikation
Böcker
- Format Inbunden
- Antal sidor 320
- Språk Engelska
- Utgivningsdatum 2022-10-18
- ISBN 9780691233734
- Förlag Princeton University Press