- Hem
- Böcker
- Kurslitteratur
- Matematik & Naturvetenskap
- Introduction to Online Convex Optimization, second edition (inbunden, eng)
Introduction to Online Convex Optimization, second edition (inbunden, eng)
New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimizat...
709 kr
755 kr
Bara 3 kvar
Skickas inom 2-3 vardagar
- Fri frakt
Fri frakt över 299:-
Snabb leverans
Alltid låga priser
Produktbeskrivning
New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process.
In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimizationIntroduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed.
This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives.
Based on the “Theoretical Machine Learning” course taught by the author at Princeton University, the second edition of this widely used graduate level text features:
Thoroughly updated material throughout New chapters on boosting, adaptive regret, and approachability and expanded exposition on optimization Examples of applications, including prediction from expert advice, portfolio selection, matrix completion and recommendation systems, SVM training, offered throughout Exercises that guide students in completing parts of proofs
In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimizationIntroduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed.
This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives.
Based on the “Theoretical Machine Learning” course taught by the author at Princeton University, the second edition of this widely used graduate level text features:
Format | Inbunden |
Omfång | 256 sidor |
Språk | Engelska |
Förlag | MIT Press Ltd |
Utgivningsdatum | 2022-09-06 |
ISBN | 9780262046985 |
Specifikation
Böcker
- Inbunden, 256, Engelska, MIT Press Ltd, 2022-09-06, 9780262046985
Leverans
Vi erbjuder flera smidiga leveransalternativ beroende på ditt postnummer, såsom Budbee Box, Early Bird, Instabox och DB Schenker. Vid köp över 299 kr är leveransen kostnadsfri, annars tillkommer en fraktavgift från 29 kr. Välj det alternativ som passar dig bäst för en bekväm leverans.
Betalning
Du kan betala tryggt och enkelt via Avarda med flera alternativ: Swish för snabb betalning, kortbetalning med VISA eller MasterCard, faktura med 30 dagars betalningstid, eller konto för flexibel delbetalning.
Specifikation
Det finns tyvärr inga specifikationer att visa för denna produkt.