- Hem
- Böcker
- Kurslitteratur
- Matematik & Naturvetenskap
- Equivariant Cohomology of Configuration Spaces Mod 2 (häftad, eng)

Equivariant Cohomology of Configuration Spaces Mod 2 (häftad, eng)
- Fri frakt
Produktbeskrivning
The focus of this book is on the mod 2 equivariant cohomology algebras of F(ℝ^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung''s main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper.
This invalidates a paper by three of the authors, Blagojević, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and ℓ-skew embeddings.
Using the new proof of Hung''s main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker.
Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject.
It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.
Format | Häftad |
Omfång | 210 sidor |
Språk | Engelska |
Förlag | Springer Nature Switzerland AG |
Utgivningsdatum | 2021-12-02 |
ISBN | 9783030841379 |
Specifikation
Böcker
- Format Häftad
- Antal sidor 210
- Språk Engelska
- Förlag Springer Nature Switzerland AG
- Utgivningsdatum 2021-12-02
- ISBN 9783030841379
Leverans
Vi erbjuder flera smidiga leveransalternativ beroende på ditt postnummer, såsom Budbee Box, Early Bird, Instabox och DB Schenker. Vid köp över 299 kr är leveransen kostnadsfri, annars tillkommer en fraktavgift från 29 kr. Välj det alternativ som passar dig bäst för en bekväm leverans.
Betalning
Specifikation
Böcker
- Format Häftad
- Antal sidor 210
- Språk Engelska
- Förlag Springer Nature Switzerland AG
- Utgivningsdatum 2021-12-02
- ISBN 9783030841379